attr2vec: Jointly Learning Word and Contextual Attribute Embeddings with Factorization Machines

Fabio Petroni, Vassilis Plachouras, Timothy Nugent, Jochen L. Leidner

https://github.com/thomsonreuters/attr2vec

Motivation

The use of word embeddings is considered a "Secret sauce" for many recent algorithms.

Popular word embeddings models:

- code.google.com/archive/p/Word2vec;
- nlp.stanford.edu/projects/glove;
- github.com/facebookresearch/fastText.

Small portion of available context used.

Modeling input data

We model the input data in terms of a target vector $Y \in \mathbb{R}^m$ and feature matrix $X \in \mathbb{R}^{m \times n}$, where:

- each row $x_i \in \mathbb{R}^n$ corresponds to a feature vector;
- variables *V* are the set of all considered words and contextual attributes;
- in *X* there are as many columns as the number of variables;
- columns grouped according to the type of the variables;
- target value $y_i \in Y$ represents the number of times the feature vector x_i has been observed.

We consider a two-fold way to compute the co-occurrence count of a feature vector x_i :

1. *linear bag-of-words*

2. *dependency-based*

Linear Bag-of-Words

Contextual information not in vector space.

attr2vec jointly associates distributed representations with words and with generic contextual attributes.

Dependency-Based

Co-occurrence count from dependency tree:

Factorization Model Based On Factorization Machines

Weighted least squares objective function:
$$J = \sum_{k=1}^{N} f(y_k) \left(s(x_k) - \log(y_k) \right)^2$$

The function f(y) is used to reduce the importance of pairs of words that co-occur rarely.

$$s(x) = \sum_{v \in V} \underbrace{x_v}_{v \in V} \cdot \underbrace{b_v}_{v_1 \in V} + \sum_{v_1 \in V} \sum_{v_2 \in V \setminus \{v_1\}} \underbrace{x_{v_1} x_{v_2}}_{v_1 v_2} \cdot \underbrace{f_{v_1}^T f_{v_2}}_{v_1 v_2}$$

Word Similarity Experiment

1.0

Precision-recall curve when attempting to rank the similar words above the related ones on the *WordSim353* dataset. the value of variable $v \in V(x_v)$

Each f_v can be interpret as a dense vector representation of variable $v \in V$.

Topic Classification Experiment

	embedding	input	logistic regression	convolutional neural network	
				static	non-static
-	random	$ec{w_r}$	70.5 (69.3)	75.7 (77.5)	74.4 (76.2)
	random	$ec{w_r} \cap ec{p_r}$	74.0 (73.9)	77.9 (79.7)	77.8 (79.8)
-	GloVe	$ec{w_i}$	77.5 (77.5)	79.7 (81.5)	82.7 (84.3)
	GloVe	$ec{w_i} \cap ec{p_r}$	80.2 (85.4)	82.5 (84.1)	84.5 (86.1)
	GloVe	$ec{w_i}^{\frown}ec{p_i}$	79.3 (83.3)	84.3 (85.8)	84.9 (86.4)
-	attr2vec	$ec{w_j}$	77.5 (77.3)	80.6 (82.3)	82.8 (84.5)
	attr2vec	$\vec{w_j} \vec{p_j}$	80.1 (83.1)	84.9 (86.1)	85.5 (86.8)

Average F1 score (and precision in parentheses) for topic prediction on the *Reuters*-21578 dataset.

- $\vec{w_r}$ refer to randomly initialized word vectors and $\vec{p_r}$ to randomly initialized POS tag vector;
- $\vec{w_i}$ and $\vec{p_i}$ respectively refer to vectors independently trained with the GloVe model;
- $\vec{w_j}$ and $\vec{p_j}$ respectively refer to vectors jointly trained with attr2vec for words and POS tags.

Dependency-based embeddings exhibit more functional similarity than GloVe embeddings.

Qualitative Evaluation

Discussion And Future Work

While attr2vec benefits from structural information, it has a price:

- the number of features is increased;
- computational cost increased w.r.t. contextagnostic models (although linear).

In future work:

- we aim to investigate the effect of adding different contextual information;
- we plan to test the resulting models in various applications.