GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Completion via Graph Partitioning

Fabio Petroni and Leonardo Querzoni

Department of Computer Control and Management Engineering Antonio Ruberti,
Sapienza University of Rome - petroni|querzoni@dis.uniroma1.it
Matrix Completion & SGD

\[\text{LOSS}(P, Q) = \sum (R_{ij} - P_i Q_j)^2 + \ldots \]

- **Stochastic Gradient Descent** works by taking steps proportional to the negative of the gradient of the LOSS.
- **Stochastic** = P and Q are updated for each given training case by a small step, toward the average gradient descent.
Scalability

- Lengthy training stages;
- High computational costs;
- Especially on large data sets;
- Input data may not fit in main memory.

Goal = Efficiently exploit computer cluster architectures.
Distributed Asynchronous SGD

- R is split;
- vectors are replicated;
- replicas concurrently updated;
- replicas deviate inconsistently;
- synchronization.

computing nodes
Bulk Synchronous Processing Model

1. local computation
2. communication
3. barrier synchronization

computing nodes
Challenges 1/2

1. Load balance
 - ensure that computing nodes are fed with the same load.

2. Minimize communication
 - minimize vector replicas.
3. Tune synchronization frequency among computing nodes.

Current implementations synchronize vector copies:

- continuously during the epoch (waste of resources);
- once after every epoch (slow convergence).

epoch = a single iteration over the ratings.
Contributions

✓ We **mitigate the load imbalance** by proposing an input slicing solution based on graph partitioning algorithms;

✓ we show how to **reduce the number of shared data** by properly leveraging known characteristics of the input dataset (bipartite power-law nature);

✓ we show how to leverage the tradeoff between communication cost and algorithm convergence rate by **tuning the frequency** of the bulk synchronization phase during the computation.
Graph representation

- The rating matrix describes a bipartite graph.

- Real data: skewed power-law degree distribution.
Input partitioner

- vertex-cut performs better than edge-cut in power-law graphs.

- Assumption: the input data doesn’t fit in main memory.
- Streaming algorithm.
- Balanced k-way vertex-cut graph partitioning:
 - minimize replicas;
 - balance edge load.
Balanced Vertex-Cut Streaming Algorithms

- **Hashing**: pseudo-random edge assignment;
- **Grid**: shuffle and split the rating matrix in identical blocks;

Bipartite Aware Greedy Algorithm

- Real word bipartite graphs are often significantly skewed: one of the two sets is much bigger than the other.
- By perfectly splitting the bigger set it is possible to achieve a smaller replication factor.

- **GIP** (Greedy - Item Partitioned)
- **GUP** (Greedy - User Partitioned)
Evaluation: The Data Sets

Degree distributions:

MovieLens 10M

Netflix
Experiments: Partitioning quality

MovieLens

NetflixB

- RF
 - Replication Factor
- RSD
 - Relative Standard Deviation
Synchronization frequency

$f = 1$

- $f =$ synchronization frequency parameter
- number of synchronization steps during an epoch.

\triangleright tradeoff between communication cost and convergence rate.

$f = 100$
Evaluation: SSE and Communication cost

MovieLens

- SSE frequency
- Communication cost

NetflixF

- SSE frequency
- Communication cost

- SSE between ASGD variants and SGD curves
- CC
Communication cost

- $T =$ the training set
- $U =$ users set
- $I =$ items set
- $V = U \cup I$
- $C =$ processing nodes
- $RF =$ replication factor
- $RF_U =$ users’ RF
- $RF_I =$ items’ RF

$$RF = \frac{|U|RF_U + |I|RF_I}{|V|}$$

$f = 1 \rightarrow CC \approx 2(|U|RF_U + |I|RF_I) = 2|V|RF$

$f = \frac{|T|}{|C|} \rightarrow CC \approx |T|(RF_U + RF_I)$
Conclusions

- three distinct contributions aimed at improving the efficiency and scalability of ASGD:
 1. we proposed an input slicing solution based on graph partitioning approach that mitigates the load imbalance among SGD instances (i.e. better scalability);
 2. we further reduce the amount of shared data by exploiting specific characteristics of the training dataset. This provides lower communication costs during the algorithm execution (i.e. better efficiency);
 3. we introduced a synchronization frequency parameter driving a tradeoff that can be accurately leveraged to further improve the algorithm efficiency.
Thank you!

Questions?

Fabio Petroni
Rome, Italy

Current position:
PhD Student in Computer Engineering, Sapienza University of Rome

Research Areas:
Recommendation Systems, Collaborative Filtering, Distributed Systems

petroni@dis.uniroma1.it